Rectification Lecture No. 1

Rectification

Definition:

The technique of integration can be applied to find the lengths of given plane curves. This process is called as rectification

Types:

1. Using $\frac{d y}{d x}$
2. Using $\frac{d x}{d y}$
3. To find the length of a curve in parametric form
4. To find the length of a loop
5. Length of the arc of a curve given by $r=f(\theta)$

Derivation of formula

Let the equation of curve be $\mathrm{y}=\mathrm{f}(\mathrm{x})$

$$
\begin{aligned}
& (\delta s)^{2}=(\delta x)^{2}+(\delta y)^{2} \\
& \left(\frac{\delta s}{\delta x}\right)^{2}=1+\left(\frac{\delta y}{\delta x}\right)^{2} \\
& \left(\frac{\delta s}{\delta x}\right)=\sqrt{1+\left(\frac{\delta y}{\delta x}\right)^{2}}
\end{aligned}
$$

Taking the limits as $\delta x \rightarrow 0$

$$
\begin{gathered}
\left(\frac{d s}{d x}\right)=\sqrt{1+\left(\frac{d y}{d x}\right)^{2}} \\
s=\int_{x_{1}}^{x_{2}} \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x
\end{gathered}
$$

Types: Using $\frac{d y}{d x}$

$$
s=\int_{x_{1}}^{x_{2}} \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x
$$

Example 1:

Find the total length of the curve $x^{2 / 3}+y^{2 / 3}=a^{2 / 3}$ Solution :

Differentiating the given equation

$$
\begin{aligned}
\frac{2}{3} x^{-1 / 3}+\frac{2}{3} y^{-1 / 3} \frac{d y}{d x} & =0 \\
x^{-1 / 3}+y^{-1 / 3} \frac{d y}{d x} & =0 \\
\frac{d y}{d x} & =-\frac{x^{-1 / 3}}{y^{-1 / 3}} \\
\frac{d y}{d x} & =-\frac{y^{1 / 3}}{x^{1 / 3}}
\end{aligned}
$$

$$
\begin{array}{lr}
\frac{d y}{d x}=-\frac{y^{1 / 3}}{x^{1 / 3}} & s=a^{1 / 3} \int_{a}^{0} x^{-1 / 3} d x \\
s=\int_{a}^{0} \sqrt{1+\left(-\frac{y^{1 / 3}}{x^{1 / 3}}\right)^{2}} d x & s=a^{1 / 3}\left[\frac{x^{-\frac{1}{3}+1}}{-\frac{1}{3}+1}\right]^{0} \\
s=\int_{a}^{0} \sqrt{1+\frac{y^{2 / 3}}{x^{2 / 3}}} d x & s=a^{1 / 3} \frac{3}{2}\left[0-a^{2 / 3}\right] \\
s=\int_{a}^{0} \sqrt{\frac{x^{2 / 3}+y^{2 / 3}}{x^{2 / 3}}} d x & s=-\frac{3}{2} a \\
s=\int_{a}^{0} \sqrt{\frac{a^{2 / 3}}{x^{2 / 3}} d x} & \text { Total length of the curve } \\
s=\int_{a}^{0} \frac{a^{1 / 3}}{x^{1 / 3} d x} & \text { s=4 X } \frac{3}{2} a=6 a \\
s=\int_{a}^{0} a^{1 / 3} x^{-1 / 3} d x &
\end{array}
$$

Example 2:

Find the total length of the parabola $x^{2}=4 y$ which lies inside the circle $x^{2}+y^{2}=6 y$

Type: Using $\frac{d x}{d y}$

$$
s=\int_{y_{1}}^{y_{2}} \sqrt{1+\left(\frac{d x}{d y}\right)^{2}} d y
$$

Example 1:

Show that the length of the parabola $y^{2}=4 a x$ from the vertex to the end of the latus rectum is $\mathrm{a}[\sqrt{2}+\log (1+\sqrt{2})]$

Solution:

Let $\operatorname{arc} \mathrm{OP}=\mathrm{s}$

$$
\begin{gathered}
\mathrm{x}=\frac{y^{2}}{4 a} \\
\frac{d x}{d y}=\frac{y}{2 a}
\end{gathered}
$$

$$
\begin{aligned}
& \frac{d x}{d y}=\frac{y}{2 a} \\
& s=\int_{0}^{2 a} \sqrt{1+\left(\frac{y}{2 a}\right)^{2}} d x \\
& s=\int_{0}^{2 a} \sqrt{1+\frac{y^{2}}{4 a^{2}}} d x \\
& s=\frac{1}{2 a} \int_{0}^{2 a} \sqrt{4 a^{2}+y^{2}} d x \\
& s=\frac{1}{2 a}\left[\frac{y}{2} \sqrt{4 a^{2}+y^{2}}+\frac{4 a^{2}}{2} \log \left(y+\sqrt{y^{2}+4 a^{2}}\right)\right] \\
& s=a[\sqrt{2}+\log (1+\sqrt{2})]
\end{aligned}
$$

Example 2:

Find the length of the curve $x=\frac{y^{4}}{4}+\frac{1}{8 y^{2}}$ from $y=1$ to $y=2$

Thank You! Any Question?

